Zona NucleareIl sito unico nazionale per la raccolta delle scorie nucleari ,
la Sogin, i Personaggi, le Norme, il business dei rifiuti radioattivi,
le situazioni ambigue di una vicenda attorno cui girano Miliardi di Euro

 |  Home  |  Contatti  Dillo a un amico  |  Newsletter   |  Forum  |  Siti "Amici"  |  Scambio Link  | Nuclear Escape? Click Here! : : |

 

 



   
   
Il sito unico nazionale per la raccolta delle scorie nucleari , la Sogin, i Personaggi, le Norme, il business dei rifiuti radioattivi  italiano

    The only national site for collection of nuclear wastes in Italy, Sogin, Personages, Rules, radioactive wastes business  english
    Le seul site national pour la récolte des déchets nucléaires en Italie, le Sogin, les Personnages, les Règles, le business des déchets radioactifs  francais
    イタリアにおける国の統合核廃棄物処分場、la Sogin(核施設管理株式会社)、重要人物、法規、放射性廃棄物ビジネス  japanese
    El único “sitio nacional” por la recolección de la basura nuclear en Italia, la SOGIN, los personajes, las normas, el negocio de los desechos radiactivos  espanol
    Einziges Atommüll-Endlager in Italien, die SOGIN, die Mitwirkenden, die Normen, der Business des radioaktiven Abfalls  deutsch

   ENGLISH REPORT
1. I.A.E.A. report of nuclear power development in Italy
2. What is SOGIN - Nuclear Plant Management?
3. What is ANPA (now called APAT)?
4. Decommissioning in Italy - National fact sheet
5. Status of decommissioning activities of Italian Nuclear Power Plants
6. More info about Scanzano Jonico (or Ionico) and nuclear waste repository
7. Italy to send nuclear waste abroad for disposal and UK to keep foreign nuclear waste


NOTIZIE IN EVIDENZA

Novità! Cerchi
news sul nucleare?

archivio nucleare

 



Non trovi quello che
cerchi? Vorresti che
fosse approfondito un
determinato argomento?
Hai individuato una
inesattezza? Hai a
disposizione altro
materiale? Per ogni
dubbio o chiarimento
non esitare a contattarci

  richiedi
  proponi
  collabora

cerchiamo collaboratori che abbiano conoscenze in ambito "nucleare" e "radioprotezione" per motivi di studio o lavoro


 


 
 

Il rilevamento e la misurazione della radioattività

 


  1. Rapidi cenni normativi
     
  2. Strumenti tecnici (professionali e semi-professionali)
    1. Dosimetri
    2. Contatori
    3. Caratteristiche dei contatore Geiger
       
  3. Unità di misura

 

B3. Caratteristiche dei contatore Geiger
Strumenti tecnici (professionali e semi-professionali)

 

Esistono molti strumenti di diversa concezione e fattura che sono in grado di rilevare e misurare la radioattività. I principi di funzionamento riguardano essenzialmente gli effetti che la radioattività provoca su alcune sostanze, come l'impressione di emulsioni fotografiche, l'eccitamento di sostanze luminescenti e la ionizzazione di gas, liquidi o cristalli al passaggio delle radiazioni. Gli scopi principali di questi strumenti sono:

  • tenere sotto controllo la dose accumulata da ciascun individuo
     
  • rilevare e misurare i livelli di irradiazione o di contaminazione radioattiva nell'ambiente, nelle cose e negli individui
     
  • tenere costantemente sotto controllo i livelli di irradiazione o di contaminazione nell'ambiente e nelle cose, con eventuale registrazione dei dati rilevati
  • dare informazioni particolareggiate sul tipo di sorgente radioattiva

     

3. Caratteristiche dei contatore Geiger

Tra tutti gli strumenti, il più comune e il più adatto per misurazioni "casalinghe", in grado di rilevare a basso costo l'eventuale danno che le radiazioni ionizzanti possono provocare sugli organismi, è senz'altro il contatore geiger. Inoltre, poiché quello che interessa conoscere, ai fini dei danni sugli organismi, è la ionizzazione prodotta da una sostanza irradiata, l'unità di misura da prendere principalmente in considerazione è il röntgen (R), cioè l'unità di misura propria dei contatori geiger. Per questi, e per altri motivi pratici, tale strumento sarà scelto per le nostre misurazioni e merita una trattazione più approfondita.


Pregi e difetti del contatore geiger
Questo strumento ha molti pregi e pochi difetti. Tra i pregi rientra la semplicità d'uso, il basso costo d'acquisto e di utilizzo, la rapidità delle misurazioni, la precisione, l' ffidabilità e la durata nel tempo. Tra i difetti vi è l'impossibilità di determinare l' energia delle radiazioni misurate e di rilevare, generalmente, le particelle alfa. Queste particelle, però, anche se hanno una grande energia, sono praticamente innocue, perché non possono penetrare oltre l'epidermide; inoltre, quando una sorgente radioattiva emette particelle alfa (o beta), emette anche radiazioni gamma, che rappresentano, si può dire, la compensazione fisica dell'emissione di particelle. Di conseguenza, le sorgenti di raggi alfa sono rilevate indirettamente attraverso il rilevamento dei raggi gamma. Conoscere poi l'energia delle radiazioni rilevate non è importante per salvaguardare la nostra salute. Non sono le radiazioni in se stesse a nuocerci, ma la ionizzazione da loro prodotta, e questa viene rilevata dal contatore geiger in tutta la sua consistenza.
Generalmente i contatori geiger sono meno precisi di quelli a scintillazione per quanto riguarda il rilevamento e la misurazione di bassi livelli di radiazione, ma se utilizzati con accortezza e per un periodo di tempo sufficientemente lungo possono dare risultati estremamente precisi. Quelli a scintillazione, del resto, sono molto delicati, sensibili alla luce e più costosi.


Le informazioni sui contatori geiger
I contatori geiger sono divenuti popolari ai tempi degli esperimenti nucleari negli anni Cinquanta e Sessanta, ma mai come dopo il disastro nucleare di Chernobyl, nel 1986, questi apparecchi si sono diffusi tra la popolazione. In Unione Sovietica vennero prodotti molti tipi tascabili, alcuni dei quali computerizzati, e in Italia sono stati venduti perfino in scatola di montaggio. Nonostante questa diffusione, però, sono ancora poche le persone che posseggono un contatore geiger e ancora meno quelle che lo sanno usare adeguatamente. Manca infatti una letteratura divulgativa al riguardo. La rivista mensile "Nuova elettronica" ha sviluppato nel tempo numerosi progetti di contatori geiger, dando non solo tutte le indicazioni per realizzarli, e fornendo a richiesta i materiali, ma spiegando anche i principi di funzionamento e le istruzioni d'uso. Purtroppo però questi progetti non sono riusciti a informare adeguatamente il pubblico, lasciando spesso il lettore nel dubbio, nell'incertezza e nella confusione mentale.


Come è fatto un contatore geiger
Un contatore geiger è costituito da un tubo contenente un gas a bassa pressione (per esempio, una miscela di argon e vapore di alcool alla pressione di 0,1 atm). Lungo l'asse del tubo è teso un filo metallico, isolato dal tubo stesso. Tra il filo e il tubo si stabilisce una differenza di potenziale (di solito 1000 volt), attraverso una resistenza dell'ordine di un miliardo di ohm. Il circuito di lettura è costituito da un transistor amplificatore, accoppiato, mediante una resistenza e un condensatore, con il contatore. Tale circuito è munito di una cuffia e/o di un numeratore (strumento di lettura analogico o digitale).


Dove si acquistano i contatori geiger
Acquistare dei contatori geiger non è difficile; basta rivolgersi a un negozio di materiale elettronico e ordinare lo strumento che riteniamo più adatto per i nostri scopi (difficilmente il negoziante avrà disponibile un contatore geiger da mostrare).


I criteri di cui bisogna tener conto nella scelta

  1. gamma e beta + gamma
    Per prima cosa bisogna che il nostro contatore geiger abbia la possibilità di rilevare sia le particelle beta che i raggi gamma. Se teniamo alla nostra salute, è necessario poter rilevare anche le particelle beta. Generalmente un buon contatore geiger ha il tubo rilevatore fatto di materiale attraversabile dalle particelle beta. Tale tubo deve essere però collocato all'interno di un involucro impermeabile a dette particelle. In questo modo, con una finestra apribile e chiudibile con un metallo in grado di non far passare le particelle beta, lo strumento potrà rilevare sia tutte le radiazioni fino al grado di penetrazione delle particelle beta (finestra aperta), sia solo le radiazioni con grado di penetrazione uguale o superiore ai raggi x e gamma (finestra chiusa).
     
  2. dimensioni del tubo geiger
    Le dimensioni del tubo geiger sono molto importanti perché più il tubo è grande, più lo strumento ha possibilità di ricevere radiazioni ionizzanti, e con maggiore costanza. Se le dimensioni sono più piccole di quelle di una pila ministilo, vuol dire che il tubo è adatto per misurare livelli molto alti di radioattività e, quindi, non fa al nostro caso. Se le dimensioni sono quelle di una pila stilo o superiori, merita di essere preso in considerazione. I contatori geiger più buoni hanno comunque la possibilità di sostituire il tubo geiger per adattare lo strumento ai livelli di radiazioni che si devono misurare.
     
  3. sistema di lettura delle radiazioni
    Un buon contatore geiger deve dare la possibilità di ascoltare con un altoparlantino, o in cuffia, la frequenza delle scariche rilevate. Gradito è però anche un voltmetro, analogico o digitale, che esprima con un valore numerico la dose di irradiazione nell'unità di tempo prestabilita. Ci sono strumenti che danno una lettura istantanea nell'arco di due secondi, ma con la possibilità di una lettura più accurata nell'arco di 20 o di 200 secondi. Il sistema però più appropriato per misurazioni precise è quello di poter fare contare lo strumento per un tempo prestabilito a scelta dell'utilizzatore. In questo modo si possono fare misurazioni brevi di sorgenti molto radioattive, e misurazioni lunghe di sorgenti poco radioattive. Le misurazioni lunghe sono poi indispensabili per tenere sotto controllo la cosiddetta "radioattività naturale", in gran parte costituita dai raggi cosmici.
     
  4. dimensioni dell'intero strumento
    Anche le dimensioni dell'intero strumento sono molto importanti, per la sua trasportabilità. Un contatore sensibile, con la possibilità di sostituire i tubi geiger, non può avere dimensioni microscopiche. È consigliabile, quindi, l'acquisto di due strumenti: uno piccolo, da taschino, ed economico, da portare sempre con noi per compiere misure indicative, e uno "grande", più costoso, per misure precise, da tenere in casa o da portare fuori con un certo impegno.

     

Come si usano i contatori Geiger

Principi generali da tenere presenti

  • Le radiazioni ionizzanti possono essere altamente pericolose se producono elevata ionizzazione nei corpi o se la ionizzazione, pur bassa, dura a lungo nel tempo
  • Le radiazioni ionizzanti diminuiscono considerevolmente i loro effetti dannosi allontanando la sorgente radioattiva o frapponendo oggetti assorbenti tra la sorgente e i corpi irradiati
  • Le radiazioni ionizzanti non sono pericolose in se stesse, ma per la ionizzazione che esse producono nella materia. Importante, dunque, non è tanto conoscere l'energia di tali radiazioni, ma piuttosto i suoi effetti, cioè l'entità della ionizzazione da esse prodotta
  • Il contatore geiger è uno strumento in grado di rilevare e misurare molto bene proprio la ionizzazione prodotta dalle radiazioni
     

Stabilire gli impulsi di un contatore geiger in presenza delle sole radiazioni di fondo
Tutti i contatoti geiger, anche i più semplici, sono in grado di rilevare il passaggio di una radiazione ionizzante per mezzo di una scarica elettrica, che può essere amplificata e "ascoltata" in cuffia o con un altoparlante, oppure può essere "vista" tramite l'accensione di Led o lo spostamento di un indice. In ogni caso, chiamiamo "impulsi" le scariche elettriche dovute al passaggio delle radiazioni, indipendentemente dal sistema utilizzato per registrarle.
Poiché anche in condizioni normali sono sempre presenti delle radiazioni (il fondo naturale di radiazioni), il primo problema da risolvere per utilizzare un contatore geiger consiste nello stabilire quanti impulsi rilevati con quel contatore (più esattamente con il tubo geiger usato dal contatore) corrispondano al livello medio delle radiazioni di fondo della zona dove si compiono le misure. Per fare ciò occorre effettuare alcune misurazioni della durata di qualche minuto (ad esempio dieci minuti sono sufficientemente indicativi per la maggior parte dei tubi geiger) e contare quanti impulsi si sono avuti in quell'arco di tempo. Dividendo il numero degli impulsi per i minuti, si ottiene la media degli impulsi al minuto. Ripetendo più volte (in luoghi diversi e a distanza di tempo) misurazioni di questo tipo, si fa presto ad avere un'idea chiara di quanti impulsi deve misurare il nostro contatore geiger in condizioni normali di radiazioni.
Se nella zona dove compiamo le misure non ci sono fonti locali di radiazioni, la quasi totalità delle radiazioni di fondo misurate saranno dovute ai raggi cosmici. Poiché al livello del mare si ha una media di una radiazione cosmica al minuto su una superficie di un centimetro quadrato, gli impulsi di un tubo geiger possono essere determinati dalle dimensioni del tubo stesso. I raggi cosmici possono diminuire o aumentare, entro certi limiti, a seconda delle condizioni atmosferiche, dell'ora del giorno e della notte e di altri fattori. Per questo motivo i valori misurati potrebbero non essere gli stessi tra una lettura e l'altra; ma se il tempo di misurazione è abbastanza lungo (almeno dieci minuti), i valori saranno comunque vicini tra loro. Attraverso misurazioni successive si avrà modo di capire il comportamento dei raggi cosmici, oltre quello del tubo geiger.


Come trasformare gli impulsi in mR/h
Il secondo problema da risolvere consiste nel ricavare, dagli impulsi rilevati, il valore della dose di esposizione in mR/h. Una volta che sono conosciuti gli impulsi del tubo geiger per i valori di fondo, un metodo empirico, ma efficace, per ricavare l'esposizione in mR/h consiste nel contare gli impulsi al minuto rilevati in una misurazione e dividerli per 60. Il valore così ottenuto va poi diviso per gli impulsi del tubo stabiliti per i valori di fondo. Ad esempio, se utilizzando un tubo da 8 imp/min (nominali) si ottenesse una misurazione media di 10 impulsi al minuto, l'esposizione misurata sarebbe di 0,0208 mR/h (= 10/60/8). Questo sistema funziona solo per valori molto bassi di esposizione, diciamo fino a dieci volte i valori di fondo, perché per valori più alti gli impulsi tendono a confondersi e il tubo geiger presenta dei "tempi morti" (della durata di qualche microsecondo) che sfuggirebbero alla nostra lettura. Per forti dosi di esposizione, che peraltro non presentano difficoltà di rilevamento come per le dosi deboli, è necessario un display di lettura.
Il metodo empirico sopra descritto presuppone un valore normale di esposizione pari a 0,0167 mR/h. Questo valore, però, può variare da zona a zona e da abitazione ad abitazione. Ciò dipende dalla natura delle rocce dei luoghi e dai materiali usati nelle costruzioni.
Stabilire dei valori assoluti non è facile e, forse, non è possibile. Comunque non è neppure necessario. Indipendentemente dal valore del fondo naturale, quello che conta davvero è rilevare le variazioni quando si avvicina il nostro contatore alle sorgenti di radiazioni oppure notare col passare del tempo variazioni nell'ambiente.


Come misurare
Supponiamo ora di avere un contatore geiger che dia già valori in mR/h o di essere noi in grado, come sopra descritto, di trasformare gli impulsi letti in mR/h. Supponiamo anche che il valore normale di esposizione si aggiri, nella zona dove si misura, intorno a 0,016 mR/h.
Innanzi tutto, occorre accendere il contatore geiger e porlo vicino all'oggetto che vogliamo misurare: un cartone di latte, una bottiglia d'acqua, una mattonella del pavimento, le lancette fosforescenti di un orologio, una parte del corpo umano, ecc. A meno che l'eventuale sorgente radioattiva non sia molto forte, nel qual caso ce ne accorgeremmo subito, occorre misurare per un periodo di tempo abbastanza lungo (i soliti dieci minuti sono in genere sufficienti), poiché l'emissione di radiazioni, specialmente se debole, non è costante. Se ottenessimo un valore decisamente al di sopra di quello medio conosciuto, ad esempio se ottenessimo un valore di 0,022 mR/h avremmo la certezza di trovarci di fronte a una piccola fonte di radiazioni ionizzanti, che potremmo avere individuato nel cartone di latte o nella bottiglia d'acqua minerale. La controprova delle nostre misurazioni si può ottenere allontanando il contatore geiger dall'oggetto misurato. In questo caso i dati rilevati dovranno scendere a valori normali.
L'allontanamento dalla sorgente radioattiva è determinante per la diminuzione della dose di esposizione rilevata, perché, a meno che la sorgente non sia molto estesa nello spazio, i valori diminuiscono in ragione del quadrato della distanza, come se la sorgente fosse puntiforme (è il caso, in pratica, del cartone di latte o della bottiglia d'acqua).


Come misurare anche le radiazioni beta
Quando si compiono misurazioni di prodotti alimentari o di oggetti con cui abbiamo contatti fisici, occorre misurare anche le radiazioni beta. A tal fine bisogna aprire la finestra che copre il tubo geiger (il contatore deve offrire questa possibilità).
Potrebbe essere utile cercare di capire in che misura la sorgente radioattiva emetta radiazioni beta e radiazioni gamma. In tal caso è sufficiente compiere due diverse misurazioni: una con la finestra del rivelatore aperta (radiazioni beta e gamma) e una con la finestra del rivelatore chiusa (solo radiazioni gamma).
Naturalmente, per fare misure attendibili occorre un po' di esperienza.

Si tenga presente che se i valori misurati sono il doppio di quelli normali, e possiamo essere esposti per lungo tempo alle radiazioni, dobbiamo cominciare a prestare attenzione alla sorgente radioattiva.    [2]

 

 

 


per rapide informazioni scientifiche sulla radioattività

Le applicazioni della radioattività e delle radiazioni ionizzanti

l' uomo, le radiazioni corpuscolari ed elettromagnetiche, le radiazioni ionizzanti

 

 



  VUOI INTERAGIRE?

 
VUOI ORIENTARTI?

 ^ INFO FAQ
 ^ NEWS
 ^ GLOSSARIO
 ^ CERCA NEL SITO

(usa il motore di ricerca e trovi quello che vuoi nelle oltre 800 pagine del sito)

  SCIENZA
1. Cosa è la radioattività? e i suoi effetti?
2. L' uomo, le radiazioni corpuscolari ed elettromagnetiche, le radiazioni ionizzanti
3. Le applicazioni della radioattività e delle radiazioni ionizzanti
4. Cosa sono le scorie nucleari?
5. Cosa sono i rifiuti radioattivi? (definizione, classificazione, origine)
6. La gestione dei rifiuti radioattivi

7. Documentazione scientifica in merito alla materia "rifiuti nucleari"
8. Come si effettua rilevamento e la misurazione della radioattività? (cenni normativi, strumenti, unità di misura)
 

 
 
NORME
1. La scelta del sito per il deposito di rifiuti nucleari: dall' Enea alla Sogin
2. Scorie nucleari. Il Commissario e la Commissione
3. Il decreto-legge n. 314/03 e la legge di conversione n.368/03
4.
Accordi, norme e raccomandazioni internazionali che non sono state rispettate nella legge 368/03
5.
Risoluzione del Comitato delle Regioni (organo UE) n. 251 del 1998
6. Il Progetto europeo COMPAS
7. Riferimenti normativi in merito alla materia "rifiuti nucleari"
8. Guida Tecnica n. 26 - La gestione dei rifiuti radioattivi

9. Le Direttive Europee che disciplinano l’ accesso del pubblico all’ informazione ambientale
10. Il diritto alle informazioni e ai processi decisionali e le sue basi normative
 
 
QUESTIONE
        SCORIE ITALIA
1. La commissione parlamentare d' inchiesta Scalia
2. La Task Force Enea
3. L' Inventario   Nazionale dei Rifiuti Radioattivi - ENEA 2000
4. Il GIS (Sistema Informativo Geografico) della Task Force Enea
5. Il GIS (Sistema Informativo Geografico) del GSP3 - SITO
6. Carlo Jean, un Generale molto militare, poco nucleare...
7. I mille incarichi del prof. Paolo Togni - vice della Sogin e tanto altro...
8. La Sogin Spa e il nucleare in Italia
9. Le attività della Sogin
10. Il parere che Carlo Rubbia ha esposto in Parlamento
11.
Il parere degli esperti: J.K. Mitchell, B. De Vivo, P.Risoluti, T. Regge
12. Quali fattori per la scelta: scientifici? ...o forse politici?
13. Il referendum sul nucleare del 1987
14. Mappa degli attuali depositi di materiale radioattivo in Italia
15.
La situazione in Italia dei rifiuti radioattivi
16. Studio Sogin per la localizzazione del sito a Scanzano Ionico - relazione integrale
17. Studio Sogin per la localizzazione del sito a Scanzano Ionico - appendice finale
18. Workshop internazionale sul decommissioning degli impianti nucleari - Roma 2004
 
 
DOSSIER ITALIA
1. L' ecomafia dei rifiuti in Italia
2. Il traffico di materiale ferroso contaminato alle fonderie
3. Navi affondate e sospetti: i traffici di rifiuti pericolosi e radioattivi
4. La legge-delega sull'ambiente: effetti, personaggi, valutazioni
5. Il Ministro dell’Ambiente Matteoli: paralisi o no?

6. La costruzione del "sito unico": l'Impregilo e la B.N.L. in prima linea?
7. A Taranto una base USA per i sottomarini nucleari?
8. Il rischio attentati terroristici legati ai depositi di scorie radioattive
 
 
DOSSIER MONDO
1. La situazione in Europa dei rifiuti radioattivi
2. I depositi per lo smaltimento dei rifiuti nucleari nel mondo
3.
Il problema delle scorie radioattive in USA

4. Il problema delle scorie radioattive in Russia
5. L'impianto di Sellafield in Gran Bretagna per il trattamento di rifiuti nucleari
6.
Lo smantellamento degli arsenali nucleari, l' uranio altamente arricchito (HEU), il plutonio e il mox
7. Il costo per la conservazione e lo smaltimento definitivo del materiale radioattivo
 
 
PROGETTI
        SPERIMENTALI
        E ALTERNATIVI
1. Lo smaltimento sotto i fondali marini
2.
La "trasmutazione" dei nuclei radioattivi a vita media-lunga in elementi stabili e il "motore" di Rubbia

3. Il Sole come discarica per le scorie nucleari
4. L'uso civile e bellico dell' uranio impoverito (il "prodotto di scarto")
5. Il batterio che ripulisce dalla radioattività
 

 


 

   

last update January 2006     ::     online since 19 December 2003